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Newsvendor problem

« Continuous demand

« Homogeneous distribution

. . optimal order quantity (Oope): 409

° Slngle perIOd expected profit with Qege: 50823
expected profit with (naive} Q: 50095

percent profit decline due to (narve) Q- 1.43

- No constraints oot et of seon oo i & 11
* Objective: Minimize cost ~ *}

- Inventory (salvage) L

- Cost of sales lost L




Product Life Cycle Planning

Merchandise Read & Replenishment / Phase Down/
Test React Model Stock End of Life/
Period Setting Markdown
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gg::gr?gt initial Read early sales, Traditional Manage down
update forecast long life cycle replenishment
*Survey experts and reorder as replenishment flow
-Reference needed — settarget Drop product in
roducts - stock levels selected stores
P Expedite for each sku-
‘Merchandise test | resupply? store Markdown price
Initial bu or transfer to
Initial Allocation stores or drop
stores?




Retail Industry Overview

Markdown 310 +
Revenues /
Total revenue 26% -}
U.S. _
( ) | Too much inventory
21% ‘ of the “wrong”
products
16% T
11% T
6%
1970 1980 1990 2010
“One third of the customers leave the stores without finding Too little inventory
the product they were looking for. I of the “right”
(Kurt Salmon Associates, 1995) products



Root Causes of the Inefficiencies

Purchase and production decisions are taken months in
advance

Long lead times —

Inaccurate forecasti ng ‘ ggjigdlzvel product forecast error rate is in the order of

‘ “Wrong” product at the “wrong” store: Transfers between
stores within season makes 20% of total movement

Inaccurate
allocation/distribution
of products




Big Data and Analytics

Day-store-customer

sales and inventory “We are awash with data but
data —) starving for information”
External and social

data

Analytics can help Data-driven Analytics
retailers double e Lower lost sales

their profitability ~ ™™ |0\ er markdown sales
* Less inventory
* 9%5-10 revenue/profit improvement




A Simple Plan

4 '
Reduce lost sales Increase revenue '
by 3% with same by 3% with o » Double the
level of inventory T T o profitability
Investment
. J
RETAILER GROSS NET PROFIT
MARGIN
Jewelry 52.4 % 2.7 %
Electronics 33.1% 2.3%
Apparel/Fashion 36.1% 4.0 %
Department Stores 32.2% 2.5%



Mavi Jeans Inventory Allocation

p
Pr t entr
237 TR Stores ?duc entry
+ Online Warehouse | _ Replenish
\ Initial Allocation eplenishment
1 -
Warehouses Wholesale
J Customers
.
/ - - - - -
International Objective: Maximize gross margin
Warehouses Constraints:
N\ * Size constraints

« Store display constraints

» Warehouse-store delivery frequency
« Seasonal products

« Lifecycle < 26 weeks Challenges:
* Single seasonal buy «  Store-SKU forecasts
_ « Highly variable demand
* Non-seasonal product (Denim Models) +  Slow moving products

* Repeated buys



Inventory replenishment to maximize profits

Current
Status

Lost Sales
Profit

Profit maximizing
strategy

Inventory




Modeling the demand distribution is of fundamental importance
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Computing the expected margin contribution of each additional

unit of inventory for each Store-SKU pair

Consider a store-SKU pair with 2 units on-hand,
and unit gross margin is $1.00

Expected Margin $ Contribution of Each Unit

Demand Realization Probabilities
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Challenges in Demand Forecasting

« Datavolume

« Censored demand

« Slow movers (zero-inflated distributions)
« Anomalies

 Promotion mix

« Seasonality/Day effects

 Products with no history (new items)



Advanced Demand Forecasting Algorithms

SKU - Store - Day level
demand forecasting

Probabilistic Demand
Forecasting structure

Machine Learning
algorithm

Smart- Model Selection
capability for different
forecasting models

Automated Outlier
Detection and cleansing

More accurate results with
Lost Sales Correction

DEMAND
PLANNING
SYSTEM

@

Identification of
Seasonality & Special Day
Effects

Promotion impact analysis
and uplift in demand
planning

Consideration of applicable
open data, i.e. Weather

Dynamic Store Clustering
changing based on time &
events

More accurate results with
using Reference Product
system

Convergence Clustering
for stores and products with
no sales history




. Dynamic Store & Product Clustering technique enables more accurate

forecasting and business results

STORE & PRODUCT CLUSTERING DIMENSIONS

. Store Clusterlng {if Columns AVG(Longitude)
i~ Rows AVGILatitude)
* Product group — store performance cross
groups PRICE ELASTICITY BASED
« Store turnover groups o STORE CLUSTERS
+ Seasonality groups
* Price elasticity groups . *
 Special day groups (Differentiating for Q e0 ) o
each special day, i.e. Religious Bayram vs. R
Christmas) o @ b . . . -
«  Product Clustering Turkey
* Product turnover groups «® * Z
* Pricelevel and elasticity groups SO : 3
®
«  Promotion uplift groups - O o,
- Special day groups T .




Outlier sales (corporate, whole sale etc.) are automatically detected and

cleansed by system to provide best outcomes in future decisions

StoreCode ProductCode HistoryDayLimit
Too1 | [1mz188 | [180
Summary
InStockDaysAvgSal. Avg. Storestock Max. SalesQuantity SalesCuantity SalesRevenue ASP InStockRate
10 541 18 1,765 11.005,18% 5.24% 100.00%
Description
H2_Dept H3_MPG H4_PG ProductDescription
030 AKSESUAR CE 118 KAHVERENGI ESYA AKSES . 414 OYUNCAK TEKLI ARABALAR
Stock Sales Historical
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Outlier detection and
correction algorithms corrects
the data based on a regular
trend of the product




In addition to national special days, also local & regional events are

taken into consideration

Kurban
Bayram

Ramazan
Bayram

Christmas @

Valentines
Day

Mother’s
Day

Father’s
Day

Neviuz 44 What is the impact of Nevruz Bayram to
o il ” T 1 N sales and inventory planning decisions?

At what level it impacts different stores at
different cities?

At which categories is it more impactful?
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Impact of tourists coming from Iran to Turkey during Nevruz should be taken into
consideration while preparing the demand and inventory plan for Istanbul and Antalya cities
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. Elasticity of demand is critical for promotions and markdown

events in both price and inventory planning problems
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Key Performance Indicators

DAILY AND WEEKLY

IN-STOCK RATES

LOST SALES

INVENTORY TURNS
(STOCK COVER)



Pilot Test: Difference in Differences

Products

Grup 1 (140) | Grup 2 (140 Others

Grup A (22) L mavi

Stores Grup B (22 ! i

Others

Stores:

Paired Matching Algorithm identifies pairs of stores based on sales and demographics
Products:

Product pairs were selected based on sales/inventory/price/hierarch information

KPI:

Pre-post test

Delta(revenues, profit, inventory turns) and statistical significance

Advantages:

Difference in Differences approach accounts for both store and product differences
Directly measurable from POS sales data




Replenishment optimization solution developed for MAVI provided

4 points improvement in Lost Sales during a controlled A/B test

|
maVI Replenishment Optimization
Ciro Stok
PT PT Dénemi et PT Dénemi
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PT Sonrasi 16 288,375 256,493  112.4% |PTSonras 16 46627 39241 119%




Concluding remarks

There is no free lunch
- Smart combination of different approaches outperforms
individual models

 Learning from mistakes/errors
- Boosting algorithms

« Keeping models up-to-date (online algorithms)
« Transfer learning (i.e. joint feature learning)

* Publicly available information
- Google Trends



THANKS

Questions?




